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of our #5.8) third paragraph prescription, we write out the corresponding component

space array as (here = (1 560 5,3“20 34,3 ,)Ju:n%)), etc)
621) (A-2I+Bu  +MY D4 - 3 Tu o FE Tu = s
6.2.2) M, W, +<A A+BY +Tu,, tPu, FE Dus . = -w
%0,0 20,0 %510 ey %10 )
6.2.3) Cu +Tu+@%ﬁ®u +A,‘o P Mu, ¥PDu =
. 90,0 AN 2o L0,0 20Y oo L, L0020
6.2.4) . +Cu,,, +ﬁ\u,+@x\n®u +8 Buy, %N*%Q:_W%w;
6.2.5) E‘ﬁ),E s | | +(A —7«1+.§$)u PR T Y,
F(A-AT+ =~V
626) . E)J_ u,JJ( ATHE DU Vs

Of course recall in this prescription in €5.8) that
627)  O=lw W=lw N=lw, |=] w, A=lw e i,
but it seems clearer to leave in these symbols on the right side of 6.2).

Here in 6.2) the various operators appearing are as follows after a change of scale
and relabeling from [6]. A denotes the kinetic energy part of the Hamiltonian,
amounting with our change of scale to atomic units to multiplication by the finite sum
{ (Z| 31) + Z [1+1 :’li}}i} where Z has CﬁeR run over the momenta of the

“electrons and posm'ons present and 2, has z run over such for the photons. Thus in

m
particular for the base space Y we have {A u ](? = [I +1 xﬁ Y (X k> where X€R

%950 S0 Yo,

with [X| % R'=RK and the electron spinindex k e { 1,2}

w

Next B, Cand D all come from the above described “plateau chopping”
modified Coulomb potential. By A.2.7) - .11) under eur Fourier transformation to
momentum space the multiplication by the potential V(#) in phase space goes over for
B toan integralg operator with kernel function l)’?—';?'l—},lﬂﬁ—?’?) and }I(lm)):(’g'mﬁ‘stn(glmp
fox iﬁ_}‘l >O, A 3«,(0) = 1, real constant b>( (see [8], eg. 2.12), .13) p.282). This
B does not change the number of electrons present, nor the number of positrons, and
clearly B does not censerve momehtum. In addition to the just indicated kernel factor,
this integral operator B also contains a constant outside factor Qﬂ@—}%a;
and an inside two by two matrix factor over the spin indices, here @_  being the fine
structure constant approximately (137)" and N the nuclear charge number (N=1 for

hydrogen). Both C and D are defined by the same type of factors, but with different
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entry of the momentum variables and different two by two matrices, so that C creates
a ffee state electron—positron pair and D destroys one. Both C and D fail to
conserve momentum. None of B, C, and D disturb the photons present.

The remammg 6.2) operators M ' T P E 5 7 all are radiation interaction

operators describing the interaction of photons w1th electrons and positrons, all

conserve momentum, and all contain the constant front factor. ( Tr) with a . above,

Here M_hylelds the creation of a photon together with a corresponding momentum shift
of the electrons and positfons,' M yields the destruction of a photon and again such a
momentu‘:r'n shift, T_; yields the creation of a photon and the destruction of an electron-
positron péir; iﬁ the oppoéite direction, T_ yields the destruction of a photon and the
creation of an electron-positron pair. Finally & yields the spontaneous creation of a
photon and an electron-positron pair, With the constraint that the sum of the three
momenta be null; thus in 6.2.5) this F goes from Y %00 into Y.: = In the opposite
direction J destroys a photon and also an electron-positron pair, with the three
momenta adding to null,

Also in 6.2) the 5 - acting on X, denote orthogonal projection onto the
component space in 6.1). Such are needed in the last two columns of 6. 2), since the
operators F there acting on a limbotic component space vector may yield parts in
different componént spaces. For example in 6.2.4) and 6.2.5) we may have both
”Rﬂ,o 8 u'a‘,l” >0 and | Pbb\ ® F I>0.

Next in 6.2), with the just described operators, the 5.8) last paragraph

prescription is to be applied, taking successive component space inverses (more below)

to reduce to a single Y base space equation. Here we have (A + B) on Yo . to be
q

%0 o ?
the pure atomic Harmltor:lan with accordingly
(A+ B) w = A,
and LL Q‘Y If ul >0 , and elgenvalues ?\ slightly shifted from the Somerfeld

?
J )V
formula (per above second paragraph preceding 6.1)). For the complex scalar A in 6.2)

using the mere notation shift A = A= LKHh)R withreal Ae{-! )+9-J say,real h= 0,

real L 7w1th u 4.{ of 6.3), we have in 6.2.1)

& I

(]
9

9,9
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6.4) (A+8—nI) Uy = {a, =+ (LK-!-Lh)R}qu 5

thus the above §5 8) prescription (with =¥ [[w, =0 )after dividing by
*%9 .
> = ” >0 yield ’
Liwm ;[' F o +F 5 u >
6.5) RLK-)-(Z&g A): Z[gu}( h-2ot < (ra. h,Ayhp R n A q 29 400

where the Y()}ogperator Pf:-t? XLy

successively removed components 6.2.6) t0 6.2.2). By R—=2+c0 asymptotic evaluation

denotes the contribution in this prescription from the

- of the 6.5) right side, considering both 7\ and [. to be constant as R—* + e, both L.

‘and A are to be determined. Smce ( 7\ }\)R ~ 0 4of course thls 6.5) requires

]

L. Li ' .
6.6) LK R-}-::‘i-eo R / - Lm <Q <RF.")‘ LM ”“”' oy ‘1 ’a>a )

For the 6.5), .6) right sides evaluation, the component space inverses entermg are
evaluated by 3.7.3) (but without convergence estimates); in the resulting operator

polynomials in these inverses and B, C, D, M L 5 T, »E,d B which commence action on

the Y state h =44 and end up back in another Y,

©0,0 %00 9,00

(essentially due to g,(’c) O(¥ ) as % >+, second paragraph after 6.2)) all the terms

state, we first note that

containing the Coulomb operators B,C,D apparently contribute at most Ot Rito the 6.5)
right side, so dropping out in the 6.6) right side (verified for all terms tested, and ten or
more so tested). Thus eliminating such Coulomb terms, the so-reduced above operator
polynomials become even order products of M +5 & 5 E,J (the radiation interaction
operators) interspersed with multiplicative operators, whose action is easily identifiable
with the usual Feynman diagrams.- Moreover, the momentum conservation (third
paragraph after 6.2)) of each radiation interaction operator makes these whole operator
products end with the same single momentum % with which their action started, and
hence being composed of only multiplication and integration operators these whole
operator products must each amount to multiplication by a real valued function of X .
Collecting like 2p power terms of such radiation interaction operators, so having Ca?:)?
front factors, we find crucially that the lead asymptotic term for each of these real
functions has the form

6.7) (%R,

with constant & independent of ?) A 3 :7\1 yand QL{ 4 but dependent upon both K



"
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6.8)

6.9)

6.10)
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and L . Thus, with pQF the finite sum of these ¢, over these product terms, the right

side of 6.6) becomes

(??) C+E) L +(«) C,+.

i o

with C exp11c1t p fold multiple My integrals involving both K and I—

Here in 6.7) actually | ‘(C’ 0 to be expected since for the 6.2) array this

corresponds to the sum of two terms whose Feynman diagrams are -

A nd /Q})

well known since before the Second World War to have their lead divergent terms -

(proportional to R) exactly cancel. More amazingly, we find for this 6.2) array that in

6.7) also KC;-" 0, But, although having sparse cancellation among a tremendous (over

100) collection of terms, C does not appear to cancel out. Thus 6.7) effectively

-becomes the 1ntegra1 equatlon

Le=(®'C,

with : Qa an explicit triple ,ua integral involving both X and L, . The appéfently
unique solution Lk of 6.9) is apparently to be found by machine numerical integration,
as yet to be carried out. Once LK is found, in 6.5) the shift ( 7\”‘}’ ) is easily found from
the next lower order (R’=] ) term in the R+ asymptotic expansion of the right side,
just a single M integral easily evaluated analytically which dependsl crucially on
(section 6) first paragraph, last sentence).

Finally returning to 6.4) and its notation shift for 2 just preceding, clearly the A
solution just found (after 6.9)) has ( N~RL M) be the weak psuedo-eigenvalue for the 6.2)
array associated with 3?\qand qu of 6.3) per the $5.8) prescription. For another such
pair Jq, and 3(;{ we similarly obtain vy

»and hence have for the psuedo-eigenvalue

difference corresponding to 5.7.17) and 4.4.28)
’ 2
(N -RLg = (W-RLD="X =2
the zero point shift — R LK canceling out (see also the ¥ 5.8) second paragraph

| reservations). This 6.10) difference should agree with the experimental Lamb shift
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when (aAq R 1“) and ( 17\9 %> Qui ) are the appropriate Lamb states, if one ignored minor
added effects such as the nuclear magnetic moment and others of which the author is
ignorant, and if also the crudeness is ignored of the various numerical data used.

The careful reader will note that error estimates and convergence criteria, for the
multitude of expansions used, are conspicuous by their absence in this section 6)
descriptive framework. Nevertheless, the independence of 3, :?‘q , qli ,_X found for
6.7)‘ (crucial for 6.10) and the zero point shift interpretation), and KCl: O seen
preceding 6.9), indicate to the author at least some validity for our section 6)
conclusions.

We" also remark that this 6.10) cancellation result suggests that suitable
modification of the physical literature computations (section 1) first paragraph) to
incorporate momentum cutoff R~ 400 asymptotics, as we have done in the A notation
shift preceding 6.4) and as critically enter the 6.5) right side, migﬁt avoid the need there
of the objectionable renormalization procedures noted. |

| Finally note that the § 5.8) pres cription applied to 6.2), and so yielding the
psuedo-eigenvalue equation 6.5) in the unknowns 7\' and Lk (note A= A% ( L+ iln)R
introduced after 6.3)), differs fundamentally and crucially from the standard second
order perturbation formula for eigenvalues (starting from 6.3) with the radiation
interaction operator being the perturbation) in that these unknowns A and L » also
enter the 6.5) equation right side. Although already used much earlier, such standard
second order perturbation formula was verified around 1942 independently by Rellich
and Kato (see [5], references, p.283, item 7); also [7], chapter VI), 6.3.5) p.486 b and
6.3.6.9.3) ii) p.506 b) for isolated eigenvalues of finite multiplicity, subject to the
perturbation operator being relatively bounded with respect to the unperturbed
operator. Presumably such relative boundedness of the radiation interaction operator
breaks down as the momentum cut off R+ 3 as indicated by the A-R LH divergence
in 6.10) with L#0 per 6.9).
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Appendix

A.1) proof of 3.6.13) lemma
With 3.6.6) notation for;ﬁ . and with P 5 Q, >and CZ'G(OJ I) © in 3.6.10), for

23

integer p2 p we defme oo

AL1) h,= <l T == > [sup Z H:P}(g),\h u;] 20

and 11kew1se % q=p*

A12) € = (infon the right side of 3.6.11)),
noting ?1 >0 as remarked after 3.6.12). With this notation, our here assumed

requirement 3.6.11) becomes with ,_7\ p o}‘ 'y (P> |

A.1.3) [hm__gligo (1 P’H ~ P) h } < (1 - 7&> e

Note from O< 7\ < 7\ < | here assumed (preceding 3.6.9))and e p (since & is

strictly i mcreasmg w1th % fl) I) thus hm 7\ 1 makes | = lim 2\ P 3 thus

0= 7\;.H-\ NANN 1 7\ makes O—-hm ( ))andhencebyAl?))

PP+ 7-P+1'-’~F

Al4) O=1lm h
pr P

FromAl3)and Al4)and ] = Lim A just seen, there exists some integer p, > P
P-N-no
such that

1)

AL5) 2) ( lj' [ 5w, L\P] L,

3) [?lfh.-pfﬁ (Qon—D ) hr}] < (- 07") Y )
all three hold. Then for S; in our 3.6.13) statement we take § = ] "17\ p 3 thus 5 >0

and ®,= 1 “,?\pz ~ Q"(i "o>‘-m> and M € [1 -5, 5 1) has 12X 21~ 51. =Pp > 27(1 a'a}"m) >o%~m.

Next for such X €{1-8, ) and real § >0, if there did exist w'eX, with /Wl =1
satisfying both 3.4.2) and 3.4.3), then 3.6.14) would follow from 3.4.3), and <{u 5 0% > 0
overall j2m+l having 7\ <A yand thus also

ALle) [Z(uw’) . ] [ <uy oa> ovaJ

AN

2y >,
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with Xo norm convergence (since {ij} is complete orthonormal in Z; ). With the
3.6.8) stated J,&{1,m) denoting »'s AI‘DAJ-‘ 5 othus ¥'<I=2 <1<R andas
noted after A.1.5) ¥'> 27 A —57‘3,2 V12u) > 0 and so '€ Qsalso

A17) 0= <u o/ 0 J.> | X
ovér all wGS‘ (see 3.1.1)) would follow for such &' by 3.4.2) and 3.3.3) with < ‘TX U'; w >° =Q
But A.lL. 6) put into A.1.7) would yield

A18) [Z <u)°4> <°J;T,..N>o] 2‘}‘57\<“)3/P><°P() xwé/jlz

ateach wWé& S 3 with pointwise convergence there, Note by Schwarz and Bessel’s that

(LR = T [Z s syl

AL9) oM

N pv

<l P Tego &, Il 121

overall W GS, , since (W ”o-’-' 1= “avjl “o and (I-T_-r,“.) ”s ] in'2.2.15).
From this finitely @ integrable bound A.1.9) over w € S, _y by dominated convergence
the A.1.8) pointwise convergence would also imply 4= L(Sx > "3) NOrm convergence,

2
A.1.8) thus becoming the £ vector equation

AL10 =L§ o, .,5>° fS,L] X CPP v> CPP .B)

here @ denoting the null vector function vanishing everywhere over & e S, .

Next using 3.6.9.1), .2) to take the 2 orthogonal projection P’ onto A.1.10),

7\>~7\

there would follow with A= 7\3 ()

A1.11) @=}:Z:<u’)°\/j ] [Z_ <U~; og-(“>> ,.g(n)a}
1= _

Next the Z orthogonal projection f.g in 3.6.10) has 'Pr 'Cﬂ =

x J'i) !'"L:hfor all integer | 6»[1)"“']‘)

and hence taking (I - Pr' ) (the complementary 'orthogonal projection) onto A.1.11)

would yield

A112) ®=12__ <‘*>°}<“>> (I- P> cw%hl
_ o)

AW
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and hence

a1 <, cvj_a(ﬁ)Z‘ ” (‘I—P*')w oy Z= H(I E >Z:<“;o}<vo>
1 Z- <u9 °§-(“3> = 9:%,3,
Z

n=n¥l
.using ]{ I—P ,“4‘1 since (I - P )is a 4 orthogonal projection, where n denotes the

least positive integer m having 7\“ o w™ 22X, Note here("‘-‘-@l)}':l'é,fh"-‘lhq has
M<p<P <3 3 < P, beingimpossible since requiring 2\4&<J} . Butsince the Z
orthogonal projections .ﬂ and (I —-P, ) have complementary mutually orthogonal range
spaces, this as usual a

Al1.14) | . H = | P Fom,i !"L n( (n)' N

1 T35, ’ >3, 'z

and by 3.6.10) with W 2 s P.? P above

A.1.15) v1-9% vz ”,,.‘9,(“) 3 ” //(1‘ P'>rfpg«(” ) H .
This A.1.15) combined with A.1. 13) would yield for such «’ '

l : ‘l
A.1.16) K% o ,wﬂ“ N (0, uz‘,y:‘-—;(’qm) left stde) & nz— <°‘) og<vo> RPICLE “

Finally for e defined in A.1.2), such w’ would have

Al17) [Z {<u9”>q[] //Z(u)“>,a,i

such bemg obvious if on the left side [ ]=0 5 and otherwise followmg from the A.1.2)
definition w1th ;= <u! 5ovs > [ (uu)gg)) Comblrung A.1.17), A.1.11) with |

) A116) A.1.5.2) with i ,P such ! would have
mnax naw ’ ex

1 ? !<‘u')<7.)>( “ 3=1<u)°“> SRR 31 ( = & (( Z‘<u‘)°9(m)> r'?mﬂuz

(< ) 09-(Y\)>\ ?CW) 3 \ZJ(" “Z<M> O}G‘ AN P (wzd\\rlj
'Le" ———f +l) \\ Z“ <U-) OV}ZCY\)Z ™ ?1(v0):1’ \Z =
_1_

E’

A.1.18)

IN

) ) i. =% "3'*@’5‘“;]&2“““/) °v9—1(m>>bﬂé
é(lé kq){%‘ . <ul’ (}/}5@2\1& %.\i:ﬁ, \<“‘) 9’?—1‘“32\2} =

< Llu)* =
1”“”0 5)

)
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using also in A.1.18) Minkowski and Schwarz, and the A.1.1) definition for t;.ﬁ with

A= .27 >m above and ¥'¢ anoted after A.1.6), and finally 3.6.14) in the last line,
With A.1.18) established, the rest of the proof deals quite straightforwardly with

3.6.15), now seen for suchu'as remarked after 3.6.14), For thelast [ } in the second

{ }of this 3.6.15), note A £ A<l makes ¥ (e+A-2) > 3 w(e+~N )2 O_, and with

b, 2b, >0 in242)such w' would have

<1ast-‘ [ ] in the second 4 }of3615)>> - > ]
- AL19) | > b, {fﬂ (FE== A)d&}l%‘<“‘:o? \ J

withhers (7€ 20 ;“*(“1 G0y Rt = (1= I w)"
f (x-H n)Ax= =N
'A.1.20) — R-1— (1 A) In(R- ~) "(1"701“(1 7\>

s R-1—(InR) - € >0,

using (1-3)In (R~2 ) < In (R~ 7\)<'lnR w1th R-»22-A>1 andIn (R- )0,
and also using 0<(1-}) ln( ) e from £(x) =xIn (+) having
’<><)="1"I“x) 'F(x)>O on xe(d)e)) _ 'f=(7<)<0 on xé(e,'l)a, andthus

~over Xg&(6,1) having O<xln(-;—<)='f(x) -‘—'F(e"'):eﬂ: Thus by A.1.19), .20) such
W' would have

@ast [ ] inthesecond { } of 3.6. 15)) >

— (1R >O
A.1.21) >(R~1—(1nR )—¢€ )b I}:_ (<~L,°p ‘j s b <R = (mR) - e)
in the last line using [)\ = I<‘*Jé’r>!2J >4 by 3.6.14) and A.1.18) above, and. 3,6. 12),
For the first [ ]1n this second { } in 3.6.15), here the 3.1.8) Holder continuity of
w,)w)  would yield for such « over j €[1,m] by uwll=1 and b; =]
in 2.4.2)
mM: | e — ()s "y o)
AL2) {’1/7(1' w u.> 7‘#(7\ vy Du;u)l (8 ) )ﬂ'”
: <f1rst ]in the second { }of 3.6. 15)) (8 ﬁ) j . (7* D )-x]ds é
' Al
A123) 2(87 )gl M ( f[( f_;\) :e] Gu’ =

—(QTQZ M (A~ ))r‘(,\ A)J<(8ﬂ')2 (b‘)/"\
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by O < ?\'—7& <{- 7a.<j in the last line. This second { }has its second [ ] 20
| by 3.1.1) and 'V’(?\ 7s L uh «w)=0 noted after 3.6.14), and thus A.1.21) and A.1.23)

would yield for such w!

<second{ _}of3615> >@Tf>{ i (K>M’}+‘ b, <R 2 —<h R~ e)}‘
A.1.24) | =@m)b,§ (R-1-(mP~-e ki z("d>m}>0
using the here assumed 3.6.12) in the last line,
For the first{ }in 3.6.15), here in the first [ ] note 7\'*‘,7\_;'-9: 1-8, "073,,,.;‘,.7\?: M.>0
(see after A.1.5)) and N — - <y 2100 , and thus such w’ would have
(ﬁrst ]in the first{ }of36155) (- 7\>Iz l<“,“>ﬂé
A.1.25) 2(1-2 )( ! h“> { Z:,_ [{ws o 9@)} ]
the last line of A.1.25) followmg by the next to last line of A. 1 18). For the second | ]

here, such w' would have

(second [ Tin theflrst{ }of3615)> z: (7\ 7\)!<u')0 P>\

A1.26
| AZ (°§'(V‘) ?OK 03.6197\ .
> (%~+, Ry )2:_ \<u,ogm>} ,

in the last line using 7\3 oo 9‘&( Ko = 7\~ ~,, and A= 7\%. by n being the least
integer M having 2\“ X, and thus having 7\5a =Y A2 7‘““ :?‘”H— D

Thus A.1.25) and A.1,26) together would yield for such «’

Erst{ Fin3615) 24~ (1-2) (¢ h)+ ( 17\%-17\«)}{2;1'\(»») A ]
— (@ ) Rur 2T~ Yl

191-)-!‘«\

A.1.27))

LW

positive except possibly iij:‘__. I <u 4 3_ (m)>1 ] .
Thus by A.1.24) and A.1.27), for A€ {1- 4, '1) and real 20 the 3.6.15) right

in this A.1.27) last line, by / A +1> A. and by A.1.53) with ¥ = f. above, all factors are

side wouldbe >0 for such 4 8o contradicting 3.6.15), and hence no such &' can
exist. .

QED. (3.6.13))
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A.2) Fourier transforms & convolutions: formula summary

A.2.1) Fourier transform (see [7], chap. VII; [1])

For wel ( Rs) ~L (R3 ) define the bounded continuous complex valued function
Uw on Ry ; called the Pouner transform of w ; over y¢R, by
A22) [V w | §) = (i) *f e““ G2 (x) Ama (D,
Here [JUwll —uW” for Z L ( R )’ U extends uniquely from L (R )nL(R}
" toall X y there becommgaumtary operator on X whose inverse U5 U._(the
ad]omtofu ) has over WE’L (R)r\L’(R yand X &Ry |
A23) &) = @Tr) 3”1/ ) 5 P
A2.4) Herrrute function transforms ([71, VII), 4.1) 1))
- The ¥ in 3.8.3) has \éEX? L,(R_,,.)‘ and with [I)'= Btp*R
A25) | U vp’ = (1) Hew Vs i
A.2.6) convolutions ([7], VII), sec 2; [1], p.58)
For u,w c—X L(R ) define over % Ry

2
A27) [u= wl() = =/, u(x~z) w(Z)dp(Z) ,
a bounded, continuous functlon on R . Also follows here (take z 7/2%-2 )
A2.8) [ W] () = [wru] (x)

A.2.9) Fourier transforms and convolutions ([7], VII), sec 2; [1], p-58)
For u,we [ (R )nX, over yEeR,
A.2.10) [V (u.*w)] (,) (;wr) {df [Uw] @,
seen by using Fubini; correspondingly here over % &R,
A211) [ w] (D) = j e F P U@}V w)(,vM,«;,)
A.2.12) relation with T' of 2.2.14),2.4.3), 2.4.6)
For w,w GX—; La.( R3 )) denoting [Lu ] (%)= u(-%)and &=Ly, over 76R3
A.2.13) [ » Q)G = <7:7 u, W>°
Here A.2.13) is seen by noting from A.2.8)

(W* W@ =[a»WG = [ 4G ~%) WRdu @ ju(x-—)f) w(x)d,u(@,.
A2.14) Rs (T, 0, w> )
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A.2.15) highest degree H“( %) term
From 3.8.29) it is clear by induction on n with H(x)=1 5 H{®=~2x 5 per E

3.8.1) that for integer n>0and some real constants C“ﬂ

A.2.16) H, () =10 @2x)" +K_?c

see also A.2.18.1) below

* A.2.17) convenient gamma and beta function formula summary --

Here we have the definitions ([11], chap VII) for real s>0 and real w>()
-1
A217.1) f_@ L€ e,
A2172) B(s w>,- Q_f (cos e)zs ! (sin 9) CL 8
Wlth the consequent relations
A217.3) ez =+,
A2174)  [(» -H): n Y [(D=]= Ol forinteger w 2 0)
2.17. F(s+1)=
A.2.17.5) (s 1)) ssf;@ ) _ () ()
A2.17.6) B($7W = [(s+w)

>

Also for real 570 we have Stlrhng s formula ([11],912.33), p. 251-253)
A2.17.7) J <9 H) =Var e (S) exp ('675 es> g 0« 95 £],

A.2.18) Hermite formula
The H (=) in3.8.1) satlsfy for 1nteger vaf and all real

218 el ("
A.2.18.1) (x) Z_( (PD) (- 2?)')< )

so yielding A.3.13) below for v=2¢, This A.2.18.1) can be seen by induction on w by
3.8.29) starting from Ho(x )=1 and H‘( X)=—AxX.

A.3) Hermite function lemma proofs

A.3.1) proof of lemma 3.8.5) and representation 3.8.12)

With % and \é' asin 3.8.3),and L asin A.2.13), for all ¥ €(0,+) and weS we

have, using A.2.13) and then A.2.11) and A.2.5)
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ug

oy Tao ) = (Taa 0 40 = [ 713160 (0 T eile-

[o]

— Duq: j sr(ﬁ? /> EUV* @)} (v v,]<7) dp (7

nal’ _.[ -zl 3 i v (s, )_\]
R B e s K}f V)57 g‘HS@)H@)}%@)

3
la“ ~lg - 1
(-—1) ’

W ZL KP qu}je&_'(w z) "IZE{WHQ )H(*"‘)}dy@

A32)

obtaining the last line by takmg y- L7 » and in the first line noting that  H (X ) in 13 ”
3.8.1) is real valued and thus so is va(33) in3.8.3)) and also noting that Lv i = ( D
from 3f8.31) or A.2.16). Also from A.2.16) we see that H\S x) Hn'(- x ) is either an all odd
or all even term polynomial in x! (of degree n+w ) according as W 40’ is odd or even,

and thus in this A.3.2) last line with real

A33) H (.—F>H(7ﬁ) Z::_: C <A;P 3>Hp+g an )

Ggw =2 (F+33)
since also. mduc’nvely the odd & Hermite polynorruals H (X) form a basis for the set

of all odd term polynomials, and likewise for the evens. Thus in this A.3.2) last line
dlstrlbutlng

A34) {3= PQ:E)H (—‘L)} b oAn PERITE Q)C(‘\’P’q )HSQZJ)"“J}:
~C (f)q){ - 34-2‘1) 2—“}

‘mlo‘“ EENCAL M
a3y C LB = TT ColirBoty
| ButA34) put into theA32) last line yields by A.2.3), .5)
V> _ ("D ngn (1.,1)% I_“_aK Kq)
ALY

3 uql’
A38) o @)/ )ltell”- q

P;‘OY_U Vg +3- :.*3 r"f?)

'ﬂ' Kf +gj-;wq-}

3=l

{9A O‘Y\v-lff g,
l S >}”£n+ﬂqli’-lllnll

C;;&ﬁl,_,——a v, (Z>2 %)

fé-g-lwn

Kw 94-35“1“5] )

3/ \\@\\ ~IF Il ,-“I“

=) Q) [Tr K, K ]



128
using here U Vﬁ, L ) V from U taken onto A.2. 5).
Taking 9= (0,0,0) in A.3.6) already verifies the asserted 3.8.12) representatlon

- !
for @, (@) of 3.8.8). Continuing for general q this A.3. 6) becomes by (&) a.llnll =) st

¥ P’
-:ca; ‘1>_ B i
A37) — (TO%’(‘"D” [”-n- K K } . ;/ C ( q) <'“D {311 g‘g 2»:\

1;

(F]oewcd (e )}

—-—(11’7 (1) ['n‘K K T Q. (—\;.—w)}e"%

i j =

Azs & ({f—“‘“") j C:{j(j)%)%)(_l) H< )

04“ <q “’,5"‘9;,) f""l —'1\0

- using A.3.5) to go backward in this distributing to obtain the A.3.7) last line with A.3.8).
We also note by A.2.16) for the A.3.3) left side that there the highest degree term

is ( -2 ) B and hence also using A.2.16) on the right side there follows in A.3.3)
Vi

5+
A.3.9) C (-HPJ)ri ) (»/‘)
and hence the polynomial Q( X)in A.3. 8) has (again A.2.16))
» P+q.—2qn

Az QW= (I)JE"“"‘(“)j:r =S Y

[2nad (%4-33)

and thus is a polynomial in ¥ of degree ( gt 4,). Hence the set /\d = {x real l GZ D=0}
is finite and contains at most ( &+,~qj) distinct members, the subset of SF"{ weR, [ 131 =1 _}
where the right side of A.3.7) equals zero is a finite union of one dimensional circles in
this two dimensional spherical surface S‘ (formed as the intersection with 5, of a finite
number of planes each perpendicular to one of the three coordinate axes). Thus A.3.7)
makes < VF )_1;' QVqu&O except for a set of g} measure zero, so proving the desired
3.8.6).
Q.E.D. (3.8.5) and 3.8.12))
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A3.11) lemma

The even index Hermite polynomials in 3.8.1) have over all integer 420 and all

real X
A3.12) | (r) Z (D [(2a)1] 2’ H (o

n=0 (D i(ag-2aw!] a(q”o e

proof of A.3. 11)
- We start from H( % ) in 3.8.1) satisfying the well known formula (A 2.18))

| f9~p)
A3.13) -ja(x) -.:Z pf £ 1) (2x)"
| 1 P (eD[Ge-2p1] g
noting the agreement of the P =0 term here with the already kriown A.2.16). To obtain

A.3.12), first note that in A.3.3) (taking 93""0 and %;= % ) we have found over g and x in

- A312) | q
A3.14) H (?7_'5‘_) =Z C“CQ>Hz<c:2w
for some unique real constants ¢ (q ), with ufact
A3.15) () =(&) =1

known by A.3.9) or arguing as there, this A.3.15) agreemg with the v=0term in A.3.12).
We will now prove A.3.12) by finite induction upon ¥ starting from the w=( case just

seen in A.3.15). Explicitly, as is thus known for n=]  we assume all integers n’ with 0294

NVl - -~
have in A.3.14) with C (Q) = 1) [( g)’) 2‘ U~
() (g ~2»«)!]
sides of A.3.12)agree for all integers € [ow), and we must then show this agreement
a(g-w) D [ar] 274
na
extends to the X terri with -1 if ancL onlyif C,{(9)= (nl)[C2g-20)1]
in A.3.14). Here noting VW terms with » >W in A.3.12) do not contribute to x
A(¢-w)
terms, the stated X  agreement requirement becomes by A:3.13)

1(q-—ﬂ)
0" 1EONGE)
(Y\') {(lq Q,Y\W o’

A3.16) _ (g~ > D L (QQW)Q (1) (1‘1”7-"*)'}
C (‘Q( 2) Z-{(h 1){(2g- 2\/\)” ((vx—n)! [(17_171)!}

J

all terms in X on both

2{g~n)
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here on the rlght side { } denoting the assumed € (q )) and the large [ ] being the

) _
coefficient of X (XJ 5 as given by A.3.13) with § replaced by (9-v) and thus

P:Y\-ﬂf\'. ButA316)becomes . ') 1
~2.(g~w) l) [(19)'] S(Q (” - >
=(2 T (a-v)l
c (1) =(2) i LT S W)
A3.17) = )”“3 - same} (1 - [0 +1) —ﬂ)

v - _ (ﬂq)'

. :(1)—-(q.--v\>{same} — Q_g{sa\me}_ ( 1) { ]

(nD1T (lg-’lV\)ﬂ

the second line ({ +-3)“' following by the binomial theorem, Fhus our induction
hypothesis with the appropriate €, (4)  formula has been verified for v ., . and
‘A.3.12) is completely proved.

Q.ED. (A3.11))

A.3.18) lemma
| With ¢ and ¥ and H ( x)asin A.3.12), .14) with ¢ (q) so determined, then

there holds Z_ c“(q) -n" H (%) -—'<3.>< ) .

A.3.19) w=o 2(g-

proof of A.3.18)
From A.3.15) and A.2.16) we already know that the highest degree term on the

left side of A.3.19) is g 34
-9 — {2 ) .
Ax) = (2
A.3.20) C. C‘ixl") =2 ( )v - g
thus A.3.19) follows from the vanishing of all lower power X terms seen from 1 j £gq

having there like A.3.16) (note w>j makes no contribution per A.2.16))
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(Coefflaent of X 43 L Z_ ( l) ¢ (q ) H <><) } =

n=0

A3.21) ] 3 ~ . Y] ixca-i)
B N O EIN () ) IS
Z { (v\'JIM 2wl (=TT [(Ra-2)1]

*(.) U (?f N

a')(_(lz-lﬂq = (M)[qwm

1) ((2937]2 (+1- 1)
JV){(QQ 24)'] )

in the A.3.21) right side first line{ }-being C (q ) of A3.12), .14) and the large [ ]
being the x4 3goefﬁc:lent of H()() | per A.3.13); thus .in the latter g'=g-w awnd
Ql"f"-‘ 9-wnw-p'=gq- ] an((?i thus YH»P a2} and _p = j~w 3 finally for the
A.3.21) last line the binomial theorem yields (+1 "‘1)i =,

QED. (A.3.18),.19)

A.3.22) proof of 3.8.13), .14)

With 3.8.8) notation we have over all Xé(0, +00), W 6-5, y integer q 20 thatin
A3.7) with A3.12),.14) and A 3.3) coeff»c:.ent whigueness

(P <“’) < 1{) _.x-:.‘,(o,o)>—_’
—(r f/(K){ PR Ve X e (4 HGE )}

B A= 2(g~w;>
:@ypr ]-%fmﬁﬁcwfﬁ

byA319)W1tth-_-,w and Ax¥=Y ("") and in 3.8.2) K TT and T 1(K> "
QED. (3.8.13), .14))

A.3.23)

2
%
-

Turning now to the proof of 3.8.15), we start with the following lemmas.
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A.3.24) lemma

With notation as in 3.8.15) and H'q'ﬂ‘:-. q,*4+9, for integers q; a0
a2

A325) (3817) left side) = 51% iif’(q‘-}-%‘)}"} {LI—(qlq—-&)]‘* {[r‘ (2,5 { rFCUgIE)

Fag, +9) ) { TR D ) (TFiag +5) ([ [ranal's %))

proof of A.3.24), .25)

From the first five lines of 3.8. 56), and the same with q 2 q ) clearly
(3.8.17) left side) = { [2 B(q,*%,9 "":?.)B (3, +4,+1, 3,+5)](47)

‘ 2B(2q+% +%)B(2g+2q +1,29 +i)
= (m)'{ [I(q+r%) (a4 )] {_r‘(q.+q,‘+1) Ma,+5)* l"(lq »2q,+) PN+ 2)
F(ag+&)[(2q,+%) [(2,+29, ) M(2q+4) [[(atg 1) F(ngi'+3 )}

= @.3.25) right 31de>

here the second line following by A.2.17.6).
QED. (A.3.25)

A.3.26)

The following Stirling’s formula (A.2.17.7)) consequences will be convenient to
- use in evaluating the A.3.25) right side.
A3.27) lemma

For integer ™ al _
[I"(“‘“z)] Q"”“ ~2' )+ 09 (w5 (-5 8 +)
sy~ VE®) el sy el - (g

i "
with all 9 6 9 I} : likewise for integer PAO

F<1P+ ::.) ( )(2) (8 (p+4 + U (p44) (pr0) 6} F
A.3.29) [[’(P+ ~ 2w (p+ ) -}-(l‘l.) (f-t-b)ey 73 (.P‘J"L’g) 5;”
with all 9;, e! P ey 6[0;1) .
proof of A.3.28), .29)

Here by A.2_.17.7) for integer Y\ 2

A.3.28)




o)™ = & (u-g) GIEOI )' )
T (mtg < “QXF v - —~& (2a~L
Fin*?d * e " ® (2w "'L)Q

= VTR “-L) "ok exp (P35 Y0l — 6 (an-sTel)

& WN'g L\ g
—mcl) QXP('*""‘{'Q'V‘ IY\( )‘f’5 (\n—-—k)ﬁn—-g (1.,,\_.2_) gm)
e (4 -0 T4~ )

< i i 2w m
ﬂﬁf(?—) E PG '~IY\- m “+ 3(“.,44) ll(*n‘%‘))

here obtaining the fourth line from the third by noting ( 1+ ("!n-ﬁ)) = (- dool ) _

Jq)

A.3.30)

- here the last line following by real ¢2 O having In (1+35) = f ( 1- uy)dv)' s -,_, 8,

with 956.-(0)1)‘ But in this last line: - =z %‘* =~@v-3) makes A.3.28) clear as des1red

To‘:see A.3.29) from A.2.17.7), here for integer P= 0
r(lp+1> e~ AP (apix) P exp(-}-é-‘(l?“‘%jle —5 ( +2> Q“’?
e+ )" T vER e PR (e RS o 6””)
=) (07 (5 s ryye® exe (M) 87 2 T
- [ a2 enp (5 ) In () 4 (T TG
= [some} €xp Yy — (2p) bn (1+(p+Y) HD (46 =3¢ +2) 6] ")

= {same} exp (J— ;,—}f;_—" + 2 (‘1r+')czp+)6 + (' (pH4) & -3 r4 "5’;”)

A3.31)

Ay :
here (1+ (4p +9') Y42y p4 yielding the fourth line and again In {}#s) = 5 — £8

TPty P+a o 25
yielding the fifth. Clearly & — %%;j)= ~3'(4p &) in this fifth line yeilds the desired
A.3.29). '

QE.D. (A.3.28), 29))

A.3.32) proof of 3.8.15)
Here conveniently denote for integer 9,20
A333)  W@E) = W(g,,4,8,)= G817 lftsidd = (A.3.25)rightside),
using A.3.25) shown above for the last equality, and our first goal here is to show this
positive real W *) —‘-i for | fzf ”lé 1. It is now convenient here to denote g=2{n ) f)j) and
since from this A.3. 25) clearly the value of YY(w fjb) is unaltered upon permuting the
M5P,3 integers, we can restrict our attention to the cases where W=2p3j20 with

Wp+j21 | First note in the (W,0,0 ) case of our triple we have in A.3.25) by A.2.17)

A334) Wiw, OO)—~(“‘F>(2"(Y\+—&) FAWFY | (Anry)
Fad3) ﬁ2“+)i> ) (m+5)™ = hd‘J-(V\fa)

with the values

33
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) _
a3z WL, 0, O> (B> )

and for integer w2d in A. 3 34) N
A.3.36) W(Y‘) 0) O> <- Y"f‘%. Y

takmg care of all the (n,0,0) cases.

o X<
3

-0]u1

i
+ 5 °

2

Next con51der1ng the (wn, P,O)cases with wapal, ﬁrst for pz1 we havein A.3.25)
a337) W(»,1,0) = L& {[rCs)) } r{n+s) Y r(an +3+J~>
AN T30 )\ Tn+2¥%)) Tam+gk
= C ﬁ) } __,_1____._.—-—-—— o 2“.“4_’1_)(2“*_&)
s ( D) ““*4“)( ”

3{ 518 { & +5—)(»«+l>} (nts)

ll

‘ (“4_'%._)1 h+J—
- 1 {n°~+1v\+-f- C\-;-.,)
30nts) UNE35n g ) Wtk
withvalues 8 3+ 5/‘.{ ( 5 4,3.,.,5% g(%)(%% =T’Z§<J5.<%)
A.3.38) ,1,0)= } % ) e w +38) 4 5
» 0)= & [ 8+1% (2 128415 _ 29 193\ (0 (L < 5
A.3.39) (1 1, ) im?;f, 952 > -6 160+36} G (1?6 50 2 9
and for m =23 * .
A340)  W(w, 1,0) <3(“ o a(awrl) O IETENE S

These A.3.37) - .40) thus take care of all (,],0) cases.

Next considering (#,p,0) cases with n2p22, thus firsti 1n A.3.25)

As4l) W@ =YE P (VA ' } [T, (mﬂ”—)]
, B+EYA+E)(1+E) 5 VT W, 1T'*(m,+3
=L (2 Y (10900 903 .5
2 ("KS)) { S } = (;)__(;__(75_',)1; — :;3; 1<% 5

Next using both A.3.28), .29) for (w,p,0 ) cases with both n2p 2 L and 23 we have
here in A.3.25) (note n+p25 )

g raementt AR o 1) () - £0-4T ]+
(y\ O> £ ﬂ 3‘1 —(&Z__._———-—— eXp + 3"[(“__%‘)-14(?'_}&-'] -
P> A
J A (v\ +-P -}-—'5_) - Ly N
A.3.42) +(16) (Y\+P+~q) (v\+P+1>+

Y (nrp )
(l(*ﬂ%-p)'*' exP(Same> (l'\r) e Kf( 5) p
4,7 . |
4(1 )(1 SS)é 11 3. 7-
Thus A.3.37) - 42) take care of all (w,p,0) cases with. n2 P AI

Next considering (W, P, j ) cases with n2p2 2521  first we have in A.3.25)



: : ’ /35
-“\/-J ﬁ['ﬂ' (m*‘@] L £ {’IT (%4%}
W(1,1,0) = 3% '%'—(I'j?: {W—‘- L (m+1>J ”‘(.3) YRIT® L))

VR o))
= (U@ _ GDun _ 143 __ L
S OHORICIG TR

nexwlzelm?e D =& (1) { ()47 } i [ (mé-n)]}

A.3.43)
<z > .

GrArD 0L )\ T Tr" (ma)]”
A.3.44) _ (8+5)(1+R)(6+2) (54D ] 17(15)(/3300
' 7 ﬁ—i{ 7(5)3} (9+ J_)(3+_k)~<2+é>((+é>i {7(5)53{ 7('7)(9(53
= (D0D0) 2,43 <Ll <5 .

(D*5(3)% e 615 "9 »
)= [ S P ]
sl T M\ D (5)(3 5 2
4 7(5) [V"‘ U (m+5)]

A.3.45) 1L 2 M o RARE Y@L+ D) (6 L)
- Aot GHDE DG+ (4504

== (23)()7)(’7)(’5)()_32 _ 09)an (13D _ A[)]Qq <—,'<§. .
(SN T@ D@D ) - (s 3vs &
next, also usmgAS 29) but not A.3.28), we have in A.3.25) ).9
2 ) 2% 16)'(6+4%) (s+a)+c1¢) (6+2) ) =
W22 % 7(5)3} {ﬁ(ﬁ’i) exp(< e 6) > 8,192 oxp(:023D)
A.346 . /_. .. 085 3) O]
! = <35> (13,) exp ("6—5 + ) ( va (
2 (62D(8IY () pay) = (- 28D <L <% 3
VR (13) . 5)(“)‘)(%;
Y1tk 2 exp +(m)“(7+—.;)
likewise 7 (Q_+ - -E D 5
WG, = ’l%r’ 7(53} (5t5) C‘Vf‘)(?”’*>(2““1><”?*3é \
5<3> ___________ exp (937’43
A.3.47) = = ( ) 5(“)(41)('7) .{5_(’7-)«-) ls)
0l
3 12 exp (. 008,92 +.715
&(”)ms 5} Va.(15) <5

e 01(7)’4) .250 <” Q.

-—-—-—’_—/
{ﬁ DIORE
Finally using both A.3.28), 29) for (w,p i) having w2p=3 and p2[22 , we have in

A325) (note n+p+;i=28)



. 1‘”3(,

W(n,pri) & am—ap—13 +alorprdpr [HC 65’{(““552' )Hf’"’)(’—”)*j
A.3.48) (w/'*ff)?’ exp *+G-5Y'0- 2 o)
T AMVIT (wp I FE) =2 [(»‘-,) AR "’) J+
=2 )exf (same) )" (Y‘+P+J4—-)[lﬁ~2‘(n+f+d)
pPryt ,1__(,1)-:(“4?_}‘ 1+ 4 rpty)

z-("/ ) em( 63) = w>=,*/*{3<£<_5;

Thus A.3.43) - .48) take care of the cases (n,£,3) with h&f:‘-"‘j’f‘-l 3 whence by A.3.33)
and the remarks after A.3.36) and A.3.42) we have now proved 3.8.17).
" From 3.8.17) now shown, 3.8.18) follows trivially. Namely, 3.8.14) shown above

\';-16.51 ' ag
—"'.""zr Quiﬂj] (wl)ﬂ-q, <Wa_ )nQa <w3) 3}

- in A.3.22} yields in 3.8.8) over
A349) ‘P»_(Vv} ={C§. €

and thence in 3.8.7)
A.3.50) [PCP (@"{éame} ) j (wi

and hence by A.3.33) and 3.8.17) just shown

23; ¥} 29 -’/'
YO () T (wg) 2 (D,

| P& l
A351) _&° Fa3 3.8.17) left side) — VV(§ 27’

so proving the desired 3.8.18)
Q.E.D. (3.8.15))

A.4)lemma
For all real X and all & e X, the G and 3 in 5.3.10), .11) satisfy the expectation

product 2.3.5) svmmetrv relations

A4 &, wiv =<{u": G » ),}
A42) <3 W y“> Cx J v> .

proof
f
With s= Y ‘)"‘&’, instead of taking § and ¥ as the integration variables, so

yielding 5.3.6) and thence 5.3.10), .11), we can equally well take § and ¥ as integration

variables, so yielding the alternate forms respectively



5 oy ny
<&N“Jv L AR [ min 5K PG 19"5.
= ey 1: / ! 2 a2 q(Wels-
A43) Y > a\"“ﬁ(e_;*o“ﬂx X(lz~s~°%gl>Q\—s—bﬁ)j(s-@ x [%s___gz;%r] cl%ds
1 97T
9= yr=l T : [eJ+w> [«max O; f-R]

X(Q)<\(u( V) (50 ?‘ Tois d q><u"(-513¥5)‘51~(5.96;:192}
) Y e————— gZ(u ']‘)x'w> og> .0(05:(\2:")40%@@

s 1+%(@ VG D),

\» [m -0 3
j ‘:LL”) V” —_—
A ! min 5, K .
<. that iw the
- - X(A'=A p* 9“’93 J)] { [ 'sawgdr
Add) =T ﬂz;"" Clz‘g;qg; {o, 2""] (s=3)x (s wor 4 U4 4P inbep
= max 0,5 % s=A-p

Now by 2.3. 5) and then using 5.3.10), y )
< o V> Z (‘D/<[G: ’](’5"61))v (-37')2))04{/“3(‘2‘):

=1

A.4.5) 7”,

—~2_ 2 C VI (“W f (5.3,10) wight side ‘*“te}"“d}dS) .

Y =i '1"9"(4

But also by 2. 3 5) and then using A.4.3) above,

v> (& v" ut} Z(*')]<{G: IS TE) MG >d/u(z)'*
g max 0,5-R

A.4.6) il
9
ds
— .

Ym.V\S R
Z}:_f;l)ﬁ;g(hmjx(m 5~ D(A 5~ A)jfs 2119.(&)9(5 rj
() " "r(ssf"r X w

(s-9) =
4 [ SR ><»u< 75 43

[ma,+

b

Grevious line right side with 1,7} &, %" relabeled so that >

Y and 7’ interchange, & and &' interchange, and ¥ isrelabeled ¥’
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Since with this relabeling we see by 5.3.10) that the far right sides of A.4.6) and A.4.5)
coincide, thus A.4.1) has been shown. )

Likewise, for A4. 2) by first 2.3. 5) and 5.3.11) we have

<3 wWiv" ’_"Z(—I)f< ” ()’7"27 v"' 2)>C£/u_(z)'—

ALT)
miv 5
=T Z -1 o A=) AV F ASEr A *)]
y—Y/-l)?'ﬁ?%X( ) (s- r)(\g)[ v (s-%)
1= _ wmax 0,5~R
‘b ' ! gl -”.- (s-393) T ¥)+
f () (LT T UwXV(ﬂ) 95T,
{1, m)
S; 5, +>€(3?w<u .-’]’/T’J)‘) ><Vu(,,'f (s—-l’)w) > dm(w)Av(wJ
5
also by 2.3.5) and thenA44) ' , |
< e T v'> <T v .u> Z(~|)]<U- " ( u"('s’B;Q)d/g@:
A.4.8) °

=ML (Vo X(A-2) m“’ 9:0g,05- "T Pl
Z-'7'?":.! 'O\ UC\I [02) YCS 2 A"IO C(T

m&XOS R

—
———

previous line right side with T and Tlinterchanged by relabeling,
@ and W’ interchanged by relabeling} and Y relabeled x’
Since with this relabeling we see that the far right sides of A.4.8) and A.4.7) coincide,
thus A.4.2) has been shown and the proof of lemma A.4) is complete.
QED. (A4))
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