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present and p + 1 electrons (so p pairs and one extra electron), and where there are 

photons present; also Y\ denotes the limbotic order (= 0 or 1 in 6.1)), which is the 

number of independent momenhlm constraint equations attached to Y,p Q (see [6]). In 
,} ".:l '" 

terms of the familiar Feynman diagrams, this "n (for the state at a given equal time 

slice) is the number less one of pieces of the diagram which cannot be connected to one 

another by diagram paths confined to prior times, when we have one initial particle. 

Now in 6.1), having Fourier transformed to R3 momentum space, the first four 

component Hilbert spaces r: lJ (with n = 0 and thus being nonlimbotic) are just the 
, L" _,;\/\ 

usual L'4 spaces over momentum variables y) 7. c R 3 with respect to "u. 3 measure 

(plus summation over electron-positron spin indices I, 2} and T(:{l, 2, 3,4) for the 

photon type), with such x,,%-tconfined by for electrons, Ijl =R' for positrons, and 

I 'R v 
for photons e with 0 <e < R ,also requiring R;:: r\ with fixed nonphysical real 

6 4 ( ",110 'd:t(1 
parameter 1-( satisfying (JrP K - Jt);, with actually K:::- (to) and arbitrarily 

chosen for our computations. Our bounded Hamiltonian part operators (see 6.2) 

below) on X of 6.1), formed in terms of ordinary multiplication and integration only 

(no differentiation), mostly contain p.) € ) and R' explicitly. Here only the 

limits of appropriate computations are considered physically meaningful and to be 

compared with experimental measurement, and apparently also required to be 

independent of K. 

The remaining two 6.1) component spaces} y. I and \' are limbo tic (n =1) 
"JiI' " 

and are also spaces, but with more complicated measures not describable so briefly, 

and which effectively confine these measures to specified momentum constraint 

hyperplanes ([6], p275-288). For example, in Y, I I after the spontaneous creation of 

an electron-positron pair with a photon, the created electron having momentum ){ and 

the positron momentum y and the photon momentum Z, the imposed momentum 

constraint is I x +- y + -Z! =: 0 "so defining a constraint hyperplane in . 

In terms of this X in 6.1) just briefly described, with H denoted the total 

Hamiltonian operator, for the requirement (J\.I - H) u. =w (equivalently (H-)\PLl.s.-w) 
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of our .r5> 5.8) third paragraph prescription, we write out the corresponding component 

P fu. 
l;l I 0.)0 0 ; ;) 

Of course~recall in this prescription in ~5.8) that 

o =- II wOjlJ)\ -::: II w')o)oH -:::; Il W!J~1] II ;:;- II W~~I II ~. 1\ W:t.,~1 \1 t> 

but it seems clearer to leave in these symbols on the right side of 6.2). 

Here in 6.2) the various operators appearing are as follows after a change of scale 

and relabeling from [6]. A denotes the kinetic energy part of the Hamiltonian, 

amounting with our change of scale to atomic units to multiplication by the finite sum 

{ ( 2:' I :z.1) +- 2:: [1 + It>WI~~ where 2: has WE'R run over the momenta. of the 
"'" """ 'i ~., '1 'i -' 

electrons and positrons present and L: has t run over such for the photons. Thus in 
Yr\ ..." k 

particular for the base space Z we have [A ~ ]<';.;k);::::: [I +Ix\~ ~ (x"k) where X f:R3 
I ;0,,0 ;0.,0 0,10;0 .)~o 

with Ixl ~ f\ :=RK and the electron spin index k E.- {11} 
-' . 

Next B, C and D all come from the above described "plateau chopping" 

modified Coulomb potential. By A.2.7) - .11) under our Fourier transformation to 

momentum space the multiplication by the potential V(9-) in phase space goes over for 

B to an integral, operator with kernel function I x-x'r~( ("it -x'l) and },(lwD=-(hlwP' st'!\(blw~ 
f~'S t~1 >D, . ~~ 0), :::: 1 J real constant b >0 (see [8L ego 2.12), .13) p.282). This 

B does not change the number of electrons present, nor the number of positrons, and 

clearly B do~s not conserve momentum. In addition to the just indicated kernel factor, -, 
this integral operator B also contains a constant outside factor(ififYNOa 

and an inside two by two matrix factor over the spin indices, here 0.
0 

being the fine 

structure constant approximately (137f' and N the nuclear charge number (N=l for 

hydrogen). Both C and D are defined by the same type of factors, but with different 
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entry of the momentum variables and different two by two matrices, so that C creates 

a free state electron-positron pair and D destroys one. Both C and D faii to 

conserve momentum. None of B, C, and D disturb the photons present. 

The remaining 6.2) operators M..r. J I± ) E ) J all are radiation interaction 

operators describing the interaction of photons with electrons and positrons, all 
~. .. 

conserve momentum, and all contain the constant front factor (~~with ao above. 

Here ~yields the creation of a photon together with a corresponding momentum shift 

of the electrons and positrons; M. yields the destruction of a photon and again such a 
, 

momentuin shift. ~ yields the creation of a photon and the destruction of an electron-

positron pair; in the opposite direction" -C yields the destruction of a photon and the 

creation of an electron-positron pair. Finally E yields the spontaneous creation of a 

photon and an electron-positron pair, with the constraint that the sum of the three 

momenta be null; thus in 6.2.5) this E goes from Y:, into T . In the opposite 
,,0)0 1.11", 

direction J destroys a photon and also an electron-positron pair, with the three 

momenta adding to nulL 

Also in 6.2) the P acting on X denote orthogonal projection onto the ~ a 
Jj<;!,'Y'. "'.)., 

component space in 6.1). Such are needed in the last two columns of 6.2), since the 

operators F there acting on a limbotic component space vector may yield parts in 

different component 

/lP B ~, H > 0 
);1,.0 .1~ I 

spaces. 

a'l'td. 

For example in 6.2.4) and 6.2.5) we may have both 

II P!JI./\ B t.\ 1,,1 II :> o. 
Next in 6.2), with the just described operators, the ~ 5.8) last paragraph 

prescription is to be applied, taking successive component space inverses (more below) 

to reduce to a single Y: base space equation. 
":>0,,0 

the pure atomic Hamiltonian with accordingly 

(A + B) qu. =:, 2'1 'lU 

Here we have (A + B) on Y to be 
o"~(1 

and LL E: Yo ,If u.11 ;> OJ and eigenvalues A slightly shifted from the Somerfeld 
~ J~O 9 ~ 9 . 

formula (per above, second paragraph preceding 6.1)). For the complex scalar X in 6.2) 

using the mere notation shift A::::::X-(L,.t~h)R with real l\'e-[-lJ +2J saY..1real h=fO) 

real Lt( ,with U. == u. of 6.3), we have in 6.2.1) 
~o q JOO 
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(A+ 13 - h 1) u =- { A - AI + cL}o(-I-r,0Rl ~ ~ 
0.,0,,0 ~ '1 :J q ) 

thus the above ~ 5.8) prescription (with u ;=. jf, (f Wo II::; 0 ) after dividing by 
'" c"o,<l "o"Il <ct, f>O = IJfll >0 yields., . 

1-~Gt~YI'\ <J. (F / + F x 1. ) I.tt u.) ) R L 1- (~--X)= U uh h-;O+ "h"lO.>L. ... Ft -"-' ) I<.q ? 13 
K:l.1 ~ ~~o ) 

where the Y operator 0 £. '>! L denotes the contribution in this prescription from the 
~o)~ r- ... -h) J }( _ 

successively removed components 6.2.6) to 6.2.2). By R -7 ..f. 00 asymptotic evaluation 

of the 6.5) right side, considering both X and L J.-< to be constant as R -\I' 7- 00.J both L K 

. and 'X are to be determined. Since (fq - X) R~ 0 ,of course this 6.5) requires 

L - lhn R-'IIu.II-~(l~""" <'l-I(F + F ) u\) 
K - ,,~+ 00 9.. • \...h ~o+ \R +-~)x" L", p. -h., >I')l.!o( 'iu. J 9. ~~ 0 • 

For the 6.5), .6) right sides evaluation, the component space inverses entering are 

evaluated by 3;7.3) (but without convergence estimates); in the resulting operator 

polynomials in these inverses and B) CJ D) M ~ ,T:t ,E,J) which commence action on 

the ? state u. == flu and end up back in another 1:, 0 state, we first note that 
°.l0.ld CI)Il .. <J ;'>:;Jt) 

(essentially due to 9-i(-t) = 0 (~-J as ~? +00) second paragraph after 6.2)) all the terms 

containing the Coulomb operators B,C,D apparently contribute at most O(l'tl ~to the 6.5) 

right side, so dropping out in the 6.6) right side (verified for all terms tested, and ten or 

more so tested). Thus eliminating such Coulomb terms, the so-reduced above operator 

polynomials become even order products of M::t-, T::I: ,E,J (the radiation interaction 

operators) interspersed with multiplicative operators" whose action is easily identifiable 

with the usual Feynman diagrams.· Moreover, the momentum conservation (third 

paragraph after 6.2)) of each radiation interaction operator makes these whole operator .., 
products end with the same single momentum X with which their action started, and 

hence being composed of only multiplication and integration operators these whole 
~ 

operator products must each amount to multiplication by a real valued function of x • 

(~" Collecting like ?. p power terms of such radiation interaction operators, so having ~ r:J 

front factors, we find crucially that the 

functions has the form 

lead asymptotic term for each of these real 

6.7} (~)P R c p 

with constant 0p independent of ~) X ) ,,\ J and t ) but dependent upon both K 
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and ~ • Thus, with f::p the finite sum of these cp over these product terms, the right 

side of 6.6) becomes '3 

(~) C +(a.",,\'J. C + (~ C + '''') 
If, 1""- I 7f:J k 'l I-"\. 3 

and 6.6) becomes . ~ 

L ~ =- (¢) KC, + (~)?KC?. +(~o) ~3 + III) 
with ~(.l explicit p fold multiple f':, integrals involving both ('\' and L~. 

Here in 6.7) actually I~Cf =: 0) to be expected since for the 6.2) array this ,xl 
corresponds to the sum of two terms whose Feynman diagrams are 

<;; a \'let (\)) ) 
well known since before the Second World War to have their lead divergent terms 

(proportional to R) exactly cancel. More amazingly, we find for this 6.2) array that in 

6.7) also Y<.,C?.=: 0 r Bu~ although having sparse cancellation among a tremendous (over 

100) collection of terms, KC,?> does not appear to cancel out. Thus 6.7) effectively 

becomes the integral equation 

L =- (~l~C 6.9) K 'tr"/ K :3 

6.10) 

with ~~~ an explicit triple #3 integral involving both K and L K • The apparently 

unique solution LK of 6.9) is apparently to be fOlmd by machine numerical integration, 

as yet to be carried out. Once LK is found~ in 6.5) the shift ( X -~ ) is easily found from 

the next lower order ( p.,0.::: 1 ) term jn the A -? +~ asymptotic expansion of the right side, 

just a single t«?> integral easily evaluated analytically which depends crucially on LK 

(section 6) first paragraph, last sentence). 
I 

Finally returning to 6.4) and its notation shift for" just preceding, clearly the 1\ 

solution just found (after 6.9)) has ( t{ - RL~) be the weak psuedo-eigenvalue for the 6.2) 

array associated with '>\ and atA 
l. q, ~ 

of 6.3) per the ~5.8) prescription. For another such 

pair A 1ft and (), we similarly obtain tft/ 01 and hence have for the psuedo-eigenvalue 
'l, 'I ja. ./ 

difference corresponding to 5.7.17) and 4.4.28) 

~-,.: - R LK) - (r\ - R L)-<) -= ~ ~ - 1\1 

the zero point shift - R LK canceling out (see also the ~ 5.8) s.econd paragraph 

reservations). This 6.10) difference should agree with the experimental Lamb shift 
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when ( it ~) and ( A tc" l,.( ) are the appropriate Lamb states, if one ignored minor 
ill' " ~ CJ ""-

added effects such as the nuclear magnetic moment and others of which the author is 

ignorant, and if also the crudeness is ignored of the various numerical data used. 

The careful reader will note that error estimates and convergence criteria, for the 

multitude of expansions used, are conspicuous by their absence in this section 6) 

descriptive framework. Nevertheless, the independence of ~ ,t9. 'caL( ,.f{ found for 

6.7)1 (crucial for 6.10) and the zero point shift interpretation), and KC~=:. 0 seen 

preceding 6.9), indicate to the author at least some validity for our section 6) 

conclusions. , 

We also remark that this 6.10) cancellation result suggests that suitable 

modification of the physical literature computations (section 1) first paragraph) to 

incorporate momentum cutoff R ~ roo asymptotics, as we have done in the i\ notation 

shift preceding 6.4) and as critically enter the 6.5) right side, might avoid the need there 

of the objectionable renormalization procedures noted. 

Finally note that the t:J 5.8) pres.Jcription applied to 6.2), and so yielding the 

psuedo-eigenvalue equation 6.5) in the unknowns I.' and Lk (note A::: A' .... (1..}f+ ih)R 
introduced after 6.3)), differs fundamentally and crucially from the standard second 

order perturbation formula for eigenvalues (starting from 6.3) with the radiation 

interaction operator being the perturbation) in that these unknowns 'X and LI( also 

enter the 6.5) equation right side. Although alr~ady used much earlier, such standard 

second order perturbation formula was verified around 1942 independently by Rellich 

and Kato (see [5], references, p.283, item 7); also [7], chapter VI), 6.3.5) p.486 b and 

6.3.6.9.3) ii) p.506 b) for isolated eigenvalues of finite multiplicity, subject to the 

perturbation operator being relatively bounded with respect to the unperturbed 

operator. Presumably such relative boundedness of the radiation interaction operator 

breaks down as the momentum cut off R ~ +00) as indicated by the i-R ~ divergence 

in 6.10) with L .... ;f.O per 6.9). 
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Appendix 

A.1) proof of 3.6.13) lemma 

With 3.6.6) notation for:t ~~S and with p. j 0 1 ) and ~ E (0.,1) . in 3.6.10~ for 

integer p ~ p.. we define C>c:) :t.] 
A.1.1) . h ~ (1+ -vrk-):1. fsup 2. tI ;rq.(~) j \\ ~ 0 . 

P I - ~ t· 'X'€ Q _ I (J 'J. } I Z 
and likewise 1 q - p oj. 

A.1.2) e
l 

== Qnf on the right side of 3.6.11))) 

noting ~I;> 0 as remarked after 3.6.12). With this notation, our here assumed 

requirement 3.6.11) becomes with ~?\ f> = 0/\ I-~ (p> 

A.1.3) (lim sup' (" - A.,)-I h J ~ (1 __ '"h )-1 P ~ -fOO ~ P + I ,... r P:, eo I ~ • 
. I 

A.1.4) 

Note from 0 <: f? <t ~+~ 1 here assumed (preceding 3.6.9~and fA (p~ P (since j-;,. is 

strictly increasing with a. (~= 1)., thus lim ~-.:...1 makes 1 :::-lim fp ,. thus _ A . CT2. ./ j~-+-""tI ~ p~+co 

0-< ,..""'AP+1 :I. P < 1-3..Ap makes 0 =- lim (A - :A ) '" and hence by A.1.3) 
1~-t-crO "1'+1"l. P ./ 

o =- lim hp .. 
~4+ClO 

From A.1.3) and A.1.4) and just seen, there .exists some integer P,. ;0. f. 
such that 

"" ~ 2-1 

(1 + II Y'III) , .1) :l. P-a, 

A.1.S) .2) (r.)' [s~ hp ] < ± ) 
I .f>.P,.. , -I 

.3) [sup I ( A - ').. )- hp}J < (1 - 0\) f ) 

A.1.6) 

p:::f!.1 :a.. P+I :1.. P I 

all three hold. Then for 6, in our 3.6.13) statement we take S, == 1 -,.?I!:! ; thus $1 > 0 
and SJ=l-l.hp'l.. <" J.-(1-)\y . ..) and A( E- [1-~,)) has 1 >X ~1-b,~"I\A>2~I(H';'-m)">l'-m' 

Nextforsuch X~tl-bl)Y ,and real ~;>OJiftheredidexist t.(,1~XO with Ilu.' llo=l 

satisfying both 3.4.2) and 3.4.3), then 3.6.14) would follow from 3.4.3), and < u.~ o"j > ~ 0 
I 0 

over all j ~ rn, +-1 having ~.<)\ ) and thus also 
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with X norm convergence (since {v.J is complete orthonormal in X ). With the 
o 0 J 0 

3.6.8)stated J,~[l)"""] denoting "SJ'=:'>'/-o'Aj"thus -:r/<1-0;>'"il<1~R and as 

noted after A.1.5) "f".:..:2. -'(1 +il..,..,) -).~, ~ :r'(1 ~""f'IOJ) > () and so 'fIE Q,;also 

A.1.7) 0 :::: (u.', T..~lw o'().lo 

over all ~~~ (see 3.1.1» would follow for such u.! by 3.4.2) and 3.3.3) ~ith < J// u.~ u.
/< =0. 

But A.1.6) put into A.1.7) would yield .- J 
A.1.8) 0 =-[ L YIt< (A.t) OV.l> < oVj? T lI' - OV~l)J + I L < u~ c1P>O < oYP) '-:r1w till 

.,i::::1 0 - \.OJ 0 '). ?!'){ 0 
, 0 p 

A.1.9) 

over all wE 5, ,since /( u.' flo = 1 = If a~,lIo and (rC~,iU ~ ~ 1 in 2.2.15). 

From this finitely ~ integrable bound A.1.9) over w € S, y by dominated convergence 

the A.1.8) pointwise convergence would also imply Z = LiS'Jo;) norm convergence, 

A.1.8) thus bec0rr.!ng the rz vector equation . J 
A.1.10) e =l'L <u.', aYj) cf· . } + ~? < u.' J oYpl fp . 

• 1 . 0 "(!. J) ~I I 0 ~' )~I . .' ..)= A ~)\ , 
. a P 

here 9 denoting the null vector function vanishing everywhere over t, E- 5, • 

Next using 3.6.9.1), .2) to take the Z orthogonal projection P' onto A.1.10lj 

there would follow with ./'V\:::: 6At- ('Y\) 

A.1.11) e = [f < v: oVj / ~ .. ?o} + lL- <tAl) o"q,.(YI) <f ("') .1 
• =-1 ) O~, .)) J I " :: A' (J ,. 0 1:' ff,. :J ..11 
~ ,. 'Y\ • 

Next the Z orthogonal projection £ in 3.6.10) has P, Cf.i .::: 't1;. for all integer j E:(1.; ~J. 
• :X! :r :; J I ;:;..1, v 

and hence taking ( I - P,:I) (the complementary orthogonal projection) onto A.1.ll) 

would yield 1 
A.1.12) e = l L (u.'"J ~ Q (Yo) (I - P't') ill. (v\) ;. 

'" ~ , 0'," 0 ~ (j? .) U I 
. . :l.v\-~ ) 
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and hence ! 00 ! 'f )/ 
A.1.13) ( <ri, ~v Q. (1\) >-111 (r - P~,) 'fo. ('lo).l' II = I (1- ~,) 2 Ylol-l< ~~ OV/}-'l.(YI) iJ :S' 9-:t"~~, £:. 

r?"J. 0 ~ d'.,. ; 1 tz 00 z 
~IIL <LL~ oY~(<(I» 'fa.('t1) i jJ 

...... -'-.1 .<r:J, 0 T ~'l. J v , 
'Y\:::YI"'" • • rz ) 

using f( 1- p.~J II ~ 1 since (! - ~,) is a Z orthogonal projection, where ;; denotes the 

least positive integer 'Yl having "A =-}~ ("')-= Xl. Note here(A.l.~ A=l-i,=~~", has 
... VI cr. ~ P'I. '" 

'Yh <:: P. < Pa ~:y} > y; < P;I. being impossible since requiring 1'" <'-a."f'l.. • But since the Z 

orthogonal projections ~r and (I -~,) have complementary mutually orthogonal range 

spaces, thtis as usual ::l. :L 

A.1.14) II Po_ (-) , H ~ = II P'/.'I :r'fc9-?Cw)jl 11 + [1 (I - ~,) TfCL (9\) j If 
l:' era, "1\ ,J, 'Zi 'Z (r~ ) I rz 

and by 3.6.10) with Y\ ~ P'I.. ;> ~ above 

A.1.1S) Yl~ 11f~~j?(Yi)Jj,llrz ~ //(1- p~.)~r~/W)Sl t{rz, • 
This A.l.lS) combined with A.l.13) would yield for such u.' 00 

A. 1.16 ) I < u! , oV ,..(~) >. \ II ;f 9-J ;;},i, ~ ~ ~ _"'f(A.,. \ lll.;t>l Ii> 6-,j; _~ I) & +~ u.') oV 9-.5~) { .fg;('~.' t 
Finally for e defined in A.l.2), such 1.)..' would have 

A.l.17) e [L~ 1.( u.') oVj >- lll.] ~ 1/.2:< Lt~ o~ >0 j'j; jll!~ 
I ~ ~I 0 .).:al Z ) 
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using also in A.1.18) Minkowski and Schwarz, and the A.1.1) definition for ~i\ with 

Y\ -= P:t > .PI > YI1. above and -rJE- Qlnoted after A.1.6), and finally 3.6.14) in the last line, 

With A.1.18) established, the rest of the proof deals quite straightforwardly with 

3.6.15») now seen for suchu'a,s remarked after 3.6.14), For the last [ } iIJ. the second 

{}ofthis3.6.15),note 'X!:l})-<l makes 't'("1'+o~-t\)-~~(~.f.l"'I\')~ 0., andwith 

bp == bQ >0 in 2.4.2) such Ua' would have 

Qast [ ] in the second 1. } of 3.6.15D > '. -l.} 
A.1.19) :> b

o 
1 ~ R-'(/+t_~)d.'f} \ ~x I (lA', oVp~) ,) 

with her~ ("note 3,&,r4~ R-\ ') ') r (R-~ '\ _ 
f

R-'( 'f 1\ -f(l- (i-A ,)J.'S' == R-l -(l-A YI i-X)-
If-t-'X)d.'X' - ~+l-j)\ t ) 

A.1.20) D -= R _ 1 _ (1 - ){) 1'vl (R - A') - (1 - 1\) 1 't\ ( 1- t\ 

) 
-I >0 >- R -1 - ( t Yl R - e -' 

using (l-~) In (R- ~ ) < In (R-~) < In R with R-/\' ='2 -r: >1 and In (R-~ ) > 0 
.) 

and also using O~ (1-~) In (t :7i ) = e~l from f ( x) -:= xln (+) having 

f'(x)-=""l-!~x) f'(X»O on xc(o)e-~, ·f'(x)<Oon xc(e~1)". andthus 

I f 1-
1 

over X (; (Of) 1) having 0< X In ()< ) = (x) ~ f (e,- ) =- e. Thus by A.1.19), .20) such 

1,).1 would have 

(fast [ ] in the second { } of 3.6.15D > 

A.1.21) >(R-l- (InK )-e-I)b [~ 1<u.I)~p>ol'J ~ r-',b,,(R-I -Cl:vdZ) - e~>O) 
~ 0 ~ ~'X 

in the last line using f ~ I""'u.,! V )o(:1J? .::. j... by 3.6.14) and A.1.18) above, aYlo. 3.b. l2.), .... ;:. .... ,'-')1>,. -::4 
o"{' - Fl 

For the first [ ] in this second { ) in 3.6.15), here the 3.1.8) Holder continuity of ' 

1'j ('~)u.~u.I) . would yield for such u.' over~ (:-[1)'fYI.] by 1/1).'11;-:1 and bJ =.1 

in 2.4.2) 1 (,) I ( I ) ) lrj 

t ~ (:r' u ~ u.') ---If. (A/-e.i\j; u~ u') I ~ \811' /r\S 'J! - ~ ~ l' J ) , 
A.1.22) .l ) J 7"0\ ')/-c?\; _'+-lIj 

(first [ ] in the second { }of 3.6.15~ :-(8 ff) t; Jt'\ ~ f ~ [( ~' ..... efl) - -:rJ d.1' ~ 
1'\ (' ");,'_". \l 0 

A.1.23) =-(8rr) ~ /1 J 1\ --e).~) f [( ~J _ /\.)_ '1!] ~Jd'1' = 
..l~1 0 D J "Y"l1. _I 

::;-(giO ~Y'tM.(X_:x.) o.-I(l\'_A.)1!S < (8rr)~ (CfJ)/IlS 
4 ~I J b.l.l " J -.l =-l 



by 0 < ",I ~\ " 1 - C\~. < j in the last line. This second { } has its second [ ] = 0 

by 3.1.1) and ~(X~\)u.~~I):::O noted after 3.6.14), and thus A.1.21) and A.1.23) 
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would yield for such (AJ"YT\ 11 
0econd { }of 3.6.15D > (:Irr){- 'J.ltJ~~)IM3] + ~ Po (R-.l :- (h R~ - eJJ= 

A.1.24) ;:;r ('21'1') ho { (R -1 - (lVl ~) - e ~1) - lj b:':; (~J)/v\J >S 
using the here assumed 3.6.12) in the last line. 

A.1.25) 

For the first { }in 3.6.15), here in the first [ ] note {\ - (?,.~-~ l-'b,-/lv •• :=-l''p;(J"A .•• :> 0 

(see after A.lo5» and ~ -;;"'J "'- l-/\j 1: l-i\) and thus such /AI would have 

Qirit [ ] in the first { }of3.6.15» 5: (1-oA')l"1;~l < u.', oVj >o\;).J ~ 
...l 00 :j.] 

~ (l-G~.)( ~ h«) [2:"...-1 (u.') 0" 9-:,("(I)>-l "I 'tl~",+t :J. 0 ,) 

the last line of A.1.25) following by the next to last line of A.1.1B)., For the second [ ] 
, , 

here, such u would have . :t 

~econd [ ] in the first { }of 3.6.15D = ~ C;r~p - I{) 1< lA(; oVr' >0 \ ~ 
OQ A ?:."A 

, 0 ,. ;l. 

::: L:- (2\_(~)- A) {<\A.~ ~Q. (~)>r, \ ~ 
~:: ...... +1 (T~ 00 0',. " )a 
~ ( /) #oJ - A __ ) z:::. \( u.

1 
-' o"9-,.{·YI)/o ) 

"l. Y\ + I ~ '1\ Y\ .... -y\ +1 

A.l.26) 

A.1.27» 

in this A.l.27) last line. by A > 'h", and by A.l.53) with Y1 ~ 0 above, all factors are 
, ?. -.r, ~ ~ . I:l,. 

positive except possibly r {;;;; \ < u.~ oVQ. ('f')>O r-1 ==. o. 1. VI ~ y\+l 0"" J 
Thus by A.l.24) and A.1.27), for r: E- (1- hI) 1) and rea~ ~~ 0 the 3.6.15) right 

side would be > 0 for such u..') so contradicting 3.6.15)", and hence no such u! can 

exist. 

Q.E.D. (3.6.13») 



A.2) Fourier transforms & convolutions: formula summary 

A.2.1) Fourier transform (see [7], chap. VII; [1]) 
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For WE:L
I 
(R) (\ L'l.( R3 ) define the bounded continuous complex valued fLmction 

Vw on R3) called the Fourier transf?rT 2f w ) over Y"[{~ by 

A.2.2) llJ w] (9) = (~/Yr%. J
R 

€-J. (1'''') y./(;;f) d~~(~.. . 
~ . 

Here II U~lIo=UwJlo for X~ L;I.( R~), U extends uniquely from Ll (R) (\LJ~) 
to all Xo 1 there becoming a unitary operator on :Xo whose inverse V-I.:; V~ (the 

adjoint of U ) has over w (: L (R)I"\ l., (R ) and .;( E: R!l 
I 3 ":3 

A.2.3) [U-' w] (x) = (2 rr)-'~ €.t.(~'J) w(r)d~o(Y). 
R:!, 

A.2.4) Hermite function transforms ([7], VII), 4.1) i)) 

The I/p in 3.8.3) has ~f:X;,L,(R~) and with UitV'=;: + fa. + ~ 
A.2.5) U Vp':::' (t)-I/p/I' Vp • 

A.2.6) convolutions ([7], VII), sec 2; [I], p.58) 

For (,I.) W ~X::: L ( R.
3
)define over ~ €- 1<3 

o ~ 

A.2.7) [U ~ vv] (x) =: f /..l (~-=E) w(z)d..JAi i ) ) 
R?J 

a bounded, continuous function on ~ • Also follows here (take i'~t-z ) 
A.2.8) [u.~w](;() -== [w*IAJ(~). 

A.2.9) Fourier transforms and convolutions ([7], VII), sec 2; [I], p.58) 

A.2.10) 

For u;w€-L,(f('30)I"\ Zo o~er 9E-R\1 J 
[U (!).*w)Jq)=-(~1Y)~{[UU.J(9~ [U w (1) J 

seen by using Fubini; correspondingly here over x e:-R3 
A.2.11) [Lt~wJ(x)::z 1 et.(;;·Y)1 lU (.1J(J)J[UvI)CY)dl'/Y) • 

f{;. 

A.2.12) relation with Tz of 2.2.14),2.4.3),2.4.6) 

For u,)WE-X; LIl.(R3 ))denoting [L~](x):::l,{(-~)and u==LI.I...) over 9f:Ra 

A.2.13) [w ~ uJ(y) ::: <~y 11" w>c, . 
Here A.2.13) is seen by noting from A.2.8) ___ . ( ~ _ --:::- _ 

l \IV ~ QjCy) = l ~ '* w}(y) = ( 'V.(y- t<) w(x)df-_/*) :::j"u.(x-y) W("i)d.~({);:: 
)R R~ 

A.2.14) ~ = < T 04 U. .. w) .. 
-y ./ 0 



A.2.15) highest degree H" (x) term 

From 3.8.29) it is clear by induction on 'tl with lJo( x) = 1" M
J
\ ~::- ~I< )' per 

3.8.1) that for integer'n~and some real constants c~'i 

A.2.16) HVI('x:) ==E-l)"'(:4~)'YI +1~~ C"'..>c:l x..,-:l.I); 

see also A.2.18.1) below~ 

. A.2.17) convenient gamma and beta function formula summary -­

Here we have the definitions ([11], chap VII) for real s >0 

A.2.17.1) ) 
(00 -'I 5-1 L 

~. res =)0 e Y (; 7/ 
('l%, ~,\~s-I \,\'.:lW-1 

A.2.17.2) 8(5';w);:: 2.)0 {cos 8J (sin $/ cJ.. e) 

with the consequent relations 

A.2.17.3) 

A.2.17.4) 

A.2.17.5) 

A.2.17.6) 

r(J~) = -rrr ) 
r(Y\tl)= Y1 t) r(l):;l;;:; Or for integer Y\ ~ 0/ 

r(S+l)=:s r('j)J r(s)r(w) 
B (SJ w) = B(w/S') := r(s+w) 

and real w> 0 

Also for real S~O we have Stirling's formula ([11]'''12.33), p. 2~1-253) 

A.2.17.7) r(s +1) -;:; Y?.1f e- s 
(51+ ~ exp (is e;)) 0 ~ e; ~1 " 

A.2.18) Hermite formula 

The f.I1J( x ) in 3.8.1) satisfy for integer Y\~ and all real 
~ p+"'II r ()'Y'4-:l.p H (x) =~ (-1) ___ Y\. - 2« 

\1\ O~p!:~ (p!)((y\-~p)!J ) 
A.2.18.1) 

so yielding A.3.13) below for 'fI ~ly. This A.2.18.1) can be seen by induction on Y\ by 

3.8.29) starting from H (x) ==1 and H ( x ) = - ~ x • 
o , 

A.3) Hermite function lemma proofs 

A.3.1) proof of lemma 3.8.5) and representation 3.8.12) 
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With Vi and't as in 3.8.3), and L as in A.2.13), for all ~ ~(O.) +00) and WE-5, we 

have, using A.2.13) and then A.2.11) and A.2.5) 



1~7 

A.3.2) 

, 
:. ~ 

obtaining the last line by taking y"':::.:k 2.) and in the first line noting that H (x) in .. I 

, ;l. " J/ '! Jl 
3.8.1) is real valued and thus so is V,nt) in3.8.3), and also noting that L Vs -:: (-:-1) V! 
from 3.8.31) or A.2.16). Also from A.2.16) we see that H (tl) ~ (><) is either an all odd . ~ ~ 

or all even term polynomial in x' (of degree Y\ +vf ) according as Yt +Yl~ is odd or even, 

and thus ill this A.3.2) last line with real C~ 
A.3.3) H~(~) HtJ.(~) ~ '2 wE 3 c~ (~)f.l) ~.i) H~~~~2~~ ) 

.1 .~ 0 ~ 't\ ~ ~ (r~ + t;ls· ~. 

A.3.5) 

since also inductively the odd ~ Hermite polynomials H,-' X) form a basis for the set 
't\ 

of all odd term polynomials, and likewise for the evens. Thus in this A.3.2) last line 
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I 

"1 U~lI .. I 
using here U Vrn'- (~)~ from U taken onto A.2.5). 

A.3.7) 

Taking ~:::; (0 0)0) in A.3.6) already verifies the asserted 3.8.12) representation 
;, I I 

. . ..... . • - -.ll~ll II ~I\ 
for 'f'cf}(itI) of 3.8.8). Contmumg for general q , this A.3.6) becomes by (.) ;:: (-1) 

< V,) 1~w ~ '{::: , ~ Il~IlI{Tf3 H G*iZ) 0 
't Ii 'ill ;.;. C C-+ a) ( 1" ~ 

=('11')'5.(-1) [!.,~Kt;K1Je- 4 .: PH -V . 1"" llHj-l"j 

i~l O!:~ !:l..I(y. +'Jj )} 'd 11il1' ~ ~ J ~1. 
=(1()2.(-1) [-rr KK1I IT Q (L w),1 e--q-

~ s =-t f; g~ J 1 ~ ~I J V5: J .~ ) 

A.3.8) 

using A.3.5) to go backward in this distributing to obtain the A.3.7) last line with A.3.8). 

We also note by A.2.16) for the A.3.3) left side that there the highest degree term 
,,~Cj. . 

is (-:t~) l ..I J and hence also using A.2.16) on the right side there follows in A.3.3) 
v.. C'. ) -(J.....)lj -I-(jj A.3.9) (J ,lj, <ij - fi o . 

and hence the polynomial Q ( >() in A.3.8) has (again A.2.16)) 
j 1, +~. - II ~q.-~", 

A:~.JO> Q (x) :=;- (-1).EJ+i; (~) J ~ + ? C; . X J 01 
..i ~ I'!::VH512.~Ic.f.~t2.)).l ,) 

. J ~~ 

and thus is a polynomial in X of degree (p -r 9.). Hence the set A.::; r)C real} Q (l\) = O} 
J J .a 1. ..: 

is finite and contains at most (il+ li) distinct members, the subset of 51-=:'{ W ER~ !Iwj ~l } 

where the right side of A.3.7) equals zero is a finite union of one dimensional circles in 

this two dimensional spherical surface S (formed as the intersection with S, of a finite , 
number of planes each perpendicular to one of the three coordinate axes). Thus A.3.7) 

makes < VF , T~ krVi>O":f: 0 except for a set of ~ measure zero, so proving the desired 

3.8.6). 

Q.E.D. (3.8.5) and 3.8.12)) 
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A.3.11) lemma 

The even index Hermite polynomials in 3.8.1) have over all integer 1~O and all 

real X q, J -i 
1-1 (~)::; L (_1)Y\ [( ;tq)y ~. 

A.3.12) .1q 't\:C ('t\ r)[(J.~-~YI)r] 
proof of A.3.11) 

. We start from l-I()<) in 3.8.1) satisfying the well known formula (A.2.18)) 
. '" ~(g-'p) . 

A.3.13) 1-1 (x) = r: (_1)1' [(:tq)!) (:2.. x) . 
!~<t p~o (p!)I(2<l-lp)!] ) 

noting the agreement of the p=O term here with the already known A.2.16). To obtain 

A.3.12), first note that in A.3.3) (taking '1.,;:&0 and 7;~ ~ X ) we have found over 'J .and -,( in 
J 

A.3.12) ~ 

H (~) -=2. c (q)H(x) 
A.3.14) ~q v ~ 'n -:;0 VI '-Ci-'" 

for some unique real constants c: (q )) with il,fact 
:lq " 

A.3.15) Co (~) =(~) = l-q 

known by A.3.9) or arguing as there, this A.3.15) agreeing with the '\'l::Oterm in A.3.12). 

We will now prove A.3.12) by finite induction upon'" starting from the "n= 0 case just 

1 '1 
seen in A.3.15). Explicitly,! as is thus known for Y\ -;:. J we assume all integers n with 0 ~'t) <;'1\ 

have in A.3.14) with C ,(q)::. (_l)'f\I [(~q)n :tJ'l all terms in x'l.(q-~) on both 
. 'f\ ( 'Y" r ) C (:Li -.. :2. .. 0 1 

sides of A.3.12)agree for all integers ....,a (;- la) VI b and we must then show this agreement 
~(q-'f\) (_1)"" [(-:tq)T] ~-g 

extendstothe X term with Yl~l ifandonlyif cV\(q) = ('(\r)((~ -~",,)r] 
IV ,.., • g. ~(!-'ft) 

in A.3.14). Here noting 'fI terms with VI >"Y} in A.3.12) do not contribute to X 
~Cf~'V\) 

terms, the stated X agreement requirement becomes by A:3.13) 

A.3.16) 

on (( ~ ). ') ( 2:.. )~ (<1- VI) (-1) + ~. 'V'1 _ 

(VI t) L ('l 'i - 'l"VI) ~r ~ , 
I _, ~ )'1\"'" ~ 4(1~~ 

)
'l.(q,-",) L"'-'{ (-1)" (~q)!]:L ( .. 1 ((1'l-'li)1J J.. 

- c (~) (l + fr-------.,,-----. 

- 'r\ ~I~O (~Il)t(~~~l~)n ((V\-'I\')rJ((~1-2Yl)U 
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the second line (1 + :;5" following by the binomial theorem.. thus our induction 

hypothesis with the appropriate 4'W\ ( <i) formula has been verified for Y\ ,). and 

-A.3.12) is completely proved. 

Q.E.D. (A.3.11)) 

A.3.18) lemma 

With <] and 'l< and H ( x) as in A.3.12), .14) with c,¥\ (q) . so determined, then 
li 

there holds L'i c (q) (_It H (~) =- (:1. x2.)Q. 
A.3.19) 'v\~O " ,-<g,->t\) 

proof of A.3.18) 

From A.3.15) and A.2.16) we already know that the highest degree term on the 

leftsideofA.3.19)is :1.q -1 ( y"J.~_ ('l)S'~~ • 

A.3.20) C~ (q) ('l.~) =- 2 ~?( ,- , 

thus A.3.19) follows from the vanishing of all lower power X terms seen from 1 ~ j ~ ~ 

having there like A.3.16) (note 't\>j makes no contribution per A.2.16) 
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A.3.21) 

in the A.3.21) right side first line { .} being C....,< q ) of A.3.12), .14) and the large [ ] 
'l.(Ii-l) . 

being the X coefficient of J.I()()perA.3.13~thus.")\ theJ~tte~ g'~~ .. ~ c1"t\a 
, , • ~(~.">'\) 

q - P :: tt - ~ _p' = '1- j and thus Y\ ;"p':::I j and p'-=:. i .... YI ~ finally for the 

A.3.21) last line the binomial theorem yields (+1 -lj =- 0,. 
Q.E:D. (A.3.18), .19)) 

A.3.22) proof of 3.8.13), .14) 

A.3.23) 

:l" ':1.( )~ .~ 
by A.3.19) with }<::k~. and 2 X ="f l.V.; and in 3.8.2) Kc;=1T and 

Q.E.D. (3.8.13), .14) 

Turning now to the proof of 3.8.15), we start with the following lemmas. 
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A.3.24) lemma 
I 

With notation as in 3.8.15) and 1('0 n =: a + ~ 1- fJ for integers ~. -= 0 
-'" ~\. 3 J 

A.3.2S) ~.8.17) left side) "'- :i;r ~ [rc~, +\)tl Hn'1, + ~f H r ("l. +i>tl.f r(~ i1iJl'+ .;:) .l 
l r(~t!, +-1)) 1 r('J.t1?+-S:) (r(~'l.? +-s.) f ([r(lp~{/I+ ~))) 

. . 
proof of A.3.24), .25) 

./ 
From the first five lines of 3.8.56)J and the same with q/. ::; l t;l. ) clearly 

i... '\ .l ~ , 

(3.8.17) left side) :2 [ [?. B(~,.f-3./1'J,;'t" 13 ('l,-f.q~+l) ~3-1-~)J~}o;:: . 
A.3.26) \ ( ~ B (~<i +~ ) ~'Z + -k) t3 ('l2, rl~ +1.) ~qi +t) 

:0" (~lIr.( ,rrC'l,+-k) r(q.~)/ [r~, +~.+l) /(~ • .,.;)]"- rC;t~,U~ H) r(~1I~1I''''~1 
. ( r (~ql+-k) r(?~ +~) r(J.~J ~"lt:il. +1) r(1..1~+-s.) [r( ~,+ ~l...J.l) r(ll!Il1-~)]) 

~ 0.3.25) right sid, J 

here the second line following by A.2.17.6). 

Q.E.D. (A.3.25») 

The following Stirling's formula (A.2.17.7» consequences will be convenient to 

use in evaluating the A.3.25) right side. 

A.3.27) lemma 

A.3.28) 

For integer '{\ ~ 1 

(r('1 +-i)J~ (2)-:).'() (-.i'(l'rt-9-'+ (/6)-'(Y\- ~)"(1-- ~re~ + , 
r( 'hi + -&) =: V J.1f ex p + 3"' (on - "k;' e: - (I ij'( VI - -!rre~ ) 

with all 
.¥.. e~"'" [ J e;, ~, p E- 0.;> 1 • 

proof of A.3.28), .29) 

Here by A.2.17.7) for integer Y) ~ 1 



Q.E.D. (A.3.28), .29)) 

A.3.32) proof of 3.8.15) 

Here conveniently denote for integer q;) ~ 0 

A.3.33) W(~) -:;;r W(q, • ./12./i?) -:::: (3.8.17) left sid~ -s: (A.3.25) right side)" 

using A.3.25) shown above for the last equality, and our first goal here is to show this 

positive real W (~) ~f for IIq /II :: 1 . It is now convenient here to denote q:l.( Y\) f).l)..; and 

since from this A.3.25) clearly the value of W(,'t\)'l)~) is tmaltered upon permuting the 

'Y\,) f J ~ integers, we can restrict our attention to the cases where \'\ ~£:;j::t 0 with 

'V\tp+~ ~ 1. First note in the ( Y\.) 0) 0 ) case of our triple we have in A.3.25) by A.2.17) 

A.3.34) Y'I(Vl)O,O) -= 0!fl,~( r(V\+1.)\'- r('lV\+~)::=.l... (J.Y\+~) __ -L(\ld-t ) 
. h hI' 1.1T r(V\ + '%.)) r (2'" -l--k) :t ( "V\ +J.:-)"l. - '" ~J- \'\ +J. WIt t e va ues .... _:;I. ~ 
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A.3.35) 

= 
A.3.42) 

Next considering ("'I') p) J ) cases with '(l = p~j~l.J first we have in A.3.25) 



A.3.43) 

A.3.44) 

A.3.45) 

A.3.46) 

A.3.47) 

Finally using both A.3.28), .29) for (l'\ )f)l) having Y\:': f:2 ~ and p ~J ~ 2. ) we have in 

A.3.25) (note '1"\ of- f.+ .) := 8) 



A.3.48) 

and the remarks after A.3.36) and A.3A2) we have now proved 3.8.17). 

From 3.8.17) now shown, 3.8.18) follows trivially. Namely, 3.8.14) shown above 

. in A.3.22) yields in 3.8.8) over _ ~:S'''JI'J11 ( ... ,/,"1. (w. t~, (oN 3 /g, 
A.3.49) ~~~(w) ;: [c! e:r. -' 

and thence in 3.8.7) ~, I ~'11 I ):t'i;l. (w,/"qJ d. C" (w) 
A.3.50) ~P:l:~i ]<iZ}:&ame] (1./ 1J') ~,( w,) (1)>;1. i 3) 

and hence by A.3.33) and 3.8.17) just shown 

A.3.51) 

~ 

If aP1.jl1 t, . ~ W(--) 5 
- -1~~.8.17)leftslde)= ~ ~ f')" 
II ~q Il~ 

so proving the desired 3.8.18) 

Q.E.D. (3.8.15») 

AA) lemma 
I 1111 ,... ,.., 

For all real )\ and all /)..)'1 EA, the ~, and J~ in 5.3.10), .11) satisfy the expectation 

product 2.3.5) symmetry relations 

A.4.1) < G.I\I u.."; yl'> = < u.": ~711 Vi;' J 

A.4.2) (J til: y 11,\ ':::; <Lt: J I Vi" 
A ~ ~ ~. 

With S = ~ + '"t'; instead of taking Sand:r' as the integration variables, so 

yielding 5.3.6) and thence 5.3.10), .11), we can equally well take Sand 't' as integration 

variables, so yielding the alternate forms respectively 



AAA) 

AA.5) 

A.4.6) 

G
reViOUS line right side with ~ "rj i;j.) w' relabeled so that ) 

=,.", Nt. ....~, 
I and I mterchange" wand uJ interchange, and ';{' is relabeled ~' • 



A.4.7) 

A.4.8) 

138 

= (P:viOUS ~~e right side with 'T and ." interchanged by rela~eIinl5; ') 

\. wand w' mterchanged by relabelms, and r relabeled "f.: /" 

Since with this relabeling we see that the far right sides of A.4.8) and A.4.7) coincide, 

thus A.4.2) has been shown and the proof of lerruna A.4) is complete. 

Q.E.D. (A.4)) 
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